Future Crime Technology can lead to new vices, such as pleasure robots, sensie addiction, or direct neural stimulation, any or all which may be legally regulated. It can also lead to variations on existing crimes, such as hijacking robots, illegally copying a mind, or transforming a person into a cyborg against his will. Some societies may declare certain technologies criminally dangerous – for example, volitional AI, nanofactories, uploading minds, or time travel – and prosecute anyone who employs them. Advancing technology can also impact the way existing crimes are perceived. Future societies could have very different attitudes to the ownership of data or the protection of personal privacy, depending on the ways that different technologies are used. If ultra-tech medicine (see Chapter 7) can make injury or death into an inconvenience, assault and even murder may be taken less seriously, as long as the victim is easy to restore. Similarly, the existence of nanofacs (pp. 91-93) or replicators (pp. 93-94) may turn the theft of physical goods into a trivial misdemeanor. ## SECURITY AND SURVEILLANCE Even as technology gives thieves and spies the ability to bypass old security systems, it creates new ones to replace them. In addition, as the average criminal becomes more sophisticated, so does the cop who has to track him down. This chapter covers security systems that protect against both physical and electronic intrusion, as well as advanced law-enforcement tools that allow police and security forces to track, identify and detain criminals more effectively – or simply suppress a riot. It might be possible to build an impregnable security system – but the more layers of security that are added, the harder it is get anything else done. If an executive has to go through six different scans every time she enters or leaves her office for a cup of coffee, or a computer requires 20 minutes of identity verification before it will let anyone use it, personal convenience and efficiency will be sacrificed. Most systems compromise between security and ease of use. A system that is too complex or too sensitive can easily be degraded, overloading its monitors with input. The simplest method of fooling an electronic security system is to convince the human component of the security system that the electronic element is malfunctioning. After receiving several false alarms, a human operator or self-programming computer may ignore input from a sensor or just turn it off, leaving a hole in the defenses. # BARRIERS, MINES, AND TRAPS Many dangerous traps have low LC. Even low-CR societies frequently ban lethal traps, on the principle that property is not as important as life. In addition to the systems described here, construction foam (p. 83), force screens (pp. 190-192), stasis webs (pp. 193-194), and wards (p. 193) make useful barriers. ### Armored Doors (TL9-12) Still the most basic way to keep somebody out. A heavy door made of an inch of composite armor will be HP 50 with DR 100 (TL9), 150 (TL10), 200 (TL11), or 300 (TL12). It is \$1,000, 200 lbs. per 10 square feet. Typical materials include ceramic composites at TL9, metal-matrix composites at TL10, diamond-carbon composites at TL11, and hyperdense alloys at TL12. The lock is usually in the adjacent wall rather than the door. #### Laser Fences (TL9-12) These project a continuous beam between two emitters, which may be built into fence posts, doorways, or corridors. Each emitter weighs 10 pounds and may be no more than 10 yards apart. *Open:* The standard "cinematic" beam fence, this produces a fixed or moving pattern that can be avoided with an Acrobatics-3 or Escape-3 roll. *Tight:* A tight grid of beams, or a thick, continuous energy field. It can't be avoided; anyone passing through takes damage. (It does, however, require more power to generate.) A computer-controlled system could start with an open pattern, then switch to a tight pattern if an intruder avoids the beams. Laser Fence (TL9): This inflicts up to 6d(2) tight-beam burn damage. \$5,000 per post for an open fence, double cost for a tight fence. LC3. Electrolaser Fence (TL9): An electrical fence using energy beams instead of wires. It delivers a HT-6 (2) affliction attack plus linked 1d-3 burn damage; use the rules for military electrolasers (p. 119). The fence can be set to "stun" or "kill." \$5,000 per post for an open fence, double cost for a tight fence. LC3. Rainbow Laser Fence (TL10): This inflicts up to 6d(3) tight-beam burn damage. \$3,000 per post for an open fence, double cost for a tight fence. LC2. *X-ray Laser Fence* (TL11): This inflicts up to 6d(5) tightbeam burn damage with the radiation and surge damage modifiers. \$4,000 per post for an open fence, double cost for a tight fence. LC2.